Non-Destructive Characterization of Dense Ceramics

V. DeLucca R.A. Haber CCOMC Meeting April 2012

Ceramic, Composite and Optical Materials Center An NSF Industry/University Cooperative Research Center

Ultrasound NDE Basics

- Analysis of time of flight (TOF) can determine speed of sound in material → elastic properties
- Analysis of amplitude variations can determine acoustic attenuation in material

- Immersion-based, pulse-echo system
- A-scans point measurements useful for quickly evaluating properties
- C-scan imaging mode useful for mapping material property variations

A-scan Point Measurements

Time-of-Flight Based Measurements

- Measures Longitudinal TOF and Shear TOF
- Dependent on density of material
- Can tolerate non-ideal sample surfaces
- Can quickly determine:
 - Longitudinal and shear speeds of sound
 - Poisson ratio
 - Young's modulus
 - Shear modulus
 - Bulk modulus

Amplitude Based Measurements

- Measures average drop in intensity over all frequencies
- Useful in determining sample heterogeneities

C-scan Property Mapping

C-scans for Area Property Maps

Attenuation Coefficient Map

C-scan Mapping

- Determining elastic property variations
 → Semblance of porosity variations
- Spatially locating large, anomalous features
- C-scans → Sensitive to sample nonuniformities
 - Surface scratches 100µm and greater apparent
 - Thickness gradient of 100µm and greater apparent
 - Sample thickness greater than 2"
 - Porosity greater than 10%
- 4" x 4" tile scan in 30 minutes

Evaluation vs. Characterization

Rapid identification of anomalous defects

- NDE identifies anomalous defects
 - Composition?
 - Effect on local microstructure?
- NDE measures elastic properties
 - Relate to density
 - New batch compositions introduce elements that reduce density but improve microstructure
- Which values are 'good'?
- What is the cause of variations?
- What about microstructure?
 - Grain size
 - Solid inclusions
 - Secondary phases

Develop Characterization Method To Answer These Questions

Characterization-Based Measurements Acoustic Attenuation

- Exponential decrease in acoustic energy defined by Beer-Lambert Law
- Very sensitive to wavelength (frequency)
- Attenuation caused by a multitude of loss mechanisms *controlled by microstructure*

From NDE to NDC: Acoustic Spectroscopy

- Measures energy loss at each measured frequency
- Possible to characterize microstructure through knowledge of loss mechanisms within material
- Total attenuation is a summation of absorption and scattering effects

Acoustic Spectroscopy

[†]Zener, C., "Internal Friction in Solids." Proceedings of the Physical Society, vol. 52, pp. 152-167, 1940.

Acoustic Spectroscopy Example

- Absorption peaks predict secondary phase particles of ~8-10µm
- Rayleigh scattering behavior predicts SiC grain size of ~10-50µm
- FESEM imaging shows that predictions are reasonable

- Reaction bonded SiC samples
- Well defined absorption peaks at lower frequencies
- Smooth transition to power law behavior at higher frequencies
 - Exponent of ~4 indicative of predominantly Rayleigh scattering

Acoustic Spectroscopy Example

- Extracting microstructural information is not trivial
- Requires knowledge of material
 - Secondary phases
 - Inclusions
 - Concentration
 - Composition
 - Scattering prefactors
- Need standard reference materials

Mean Grain Size Map (µm) Assuming Rayleigh

Mean Grain Size Map (µm)

Assuming Stochastic

Goals

- SPS SiC samples using several different types of B₄C additives with varying size and morphology
 - Commercial B₄C powders from ESK, H.C. Starck
 - B₄C powder made at Rutgers via rapid carbothermal reduction
- SPS SiC samples using different processing methods
 - Dry mixing in SpectroMill
 - Filter press from ball milled slurry
- Use ultrasound methods to determine elastic properties and predict microstructural features
 - Use both conventional ultrasound NDE techniques and Acoustic Spectroscopy
- Perform FESEM imaging to characterize microstructure
 - Compare NDE predictions with FESEM images
- Examine relationship between additive size/morphology and processing methods and SiC microstructure and acoustic properties

Boron Carbide Additives

ESK Tetrabor 1250 mesh (d50: approx 6µm)

H.C. Starck HD20 (d50: 0.3 - 0.6µm)

ESK Tetrabor 3000F (d50: approx 1µm)

Rutgers RCR SF5 (d50: 0.59µm)

SiC with Different Additive Size and Morphology

- Ball milled in ethanol 3 hours
- H.C. Starck UF-25 SiC
- 0.5% or 1.0% B₄C
- 1.5% Fisher Lamp Black
- Different types of B₄C additives
 - ESK Tetrabor 3000F
 - ESK Tetrabor 1250 mesh
 - H.C. Starck HD20
 - Rutgers RCR SF5

Sample	B_4C added
1a	0.5% ESK Tetrabor 3000F
1b	1.0% ESK Tetrabor 3000F
2a	0.5% ESK Tetrabor 1250mesh
2b	1.0% ESK Tetrabor 1250mesh
3a	0.5% HCStarck HD20
3b	1.0% HCStarck HD20
4a	0.5% Rutgers SF5
4b	1.0% Rutgers SF5

- Sintered in Thermal Technologies SPS 10-4 unit
 - Argon atmosphere
 - 50MPa pressure

Ultrasound NDE, mechanical sectioning and FESEM imaging for characterization

Ultrasound Results

Frequency (MHz)

- No sharp peaks at lower frequencies
 - Broad inclusion size distribution
 - Inclusions too large/small
- Anomalous behavior at higher frequencies
 - Non-uniform grain size distribution
 - Surface effects
- Both absorption and scattering assume spherical particles what if we don't have these?

Sample	cL (m/s)	cS (m/s)	Poisson	Density	E (GPa)	G (GPa)	K (GPa)
1a (0.5% ESK Tetrabor 3000F)	12293	7496	0.204	3.20	433	180	244
1b (1.0% ESK Tetrabor 3000F)	12211	7484	0.199	3.19	429	179	237
2a (0.5% ESK Tetrabor 1250 mesh)	12324	7475	0.209	3.20	432	179	248
2b (1.0% ESK Tetrabor 1250 mesh)	11974	7376	0.194	3.19	415	174	226
3a (0.5% HCStarck HD20)	12184	7590	0.183	3.20	436	184	229
3b (1.0% HCStarck HD20)	12384	7471	0.214	3.20	434	179	253
4a (0.5% Rutgers SF5)	12295	7478	0.207	3.20	432	179	241
4b (1.0% Rutgers SF5)	12270	7443	0.209	3.20	429	177	245

0.5% B₄C Additive

Size/oESKIUSeohrasbare302005 consistent, even 54/thESiffeTetratadoditi26 Sizressh

0.5% HAC sataptes FDB Odense with little if any wst % Fortgeres SF5

0.5% B₄C Additive

All samples show large, elongated grains

Sample 2a shows smaller average grain size, fewer very large grains

1.0% B₄C Additive

1.0% ESK/Toetrabldit Breso more inclusions 0 Bar test statutes 1250 mesh

1.0% HACLS Stapped FDIBOdense with little if any visit Potosite/SF5

1.0% B₄C Additive

Samples still show elongated grains

Again, larger B₄C additive seems to reduce average grain size

SiC Made with Different Processing Methods

- Mark I Baseline sample
 - Dry mixed in SpectroMill
 - H.C. Starck UF-25 SiC
 - 0.5% ESK Tetrabor 3000F B₄C
 - 1.0% Fisher Lamp Black C

- Sintered in Thermal Technologies SPS 10-4 unit
 - Argon atmosphere
 - 50MPa pressure

- Mark II Filter-pressed samples
 - Ball milled in ethanol 24 hours
 - Filter pressed at 15psi
 - H.C. Starck UF-25 SiC
 - 0.5% Rutgers SF5 B₄C
 - 1.5% Fisher Lamp Black C

Ultrasound Evaluation

Sample	cL (m/s)	cS (m/s)	Poisson	Density (g/cc)	E (GPa)	G (GPa)	K (GPa)
Mark I-a	12196	7589	0.184	3.20	437	185	231
Mark I-b	12072	7486	0.188	3.20	426	179	227
Mark I-c	12054	7459	0.190	3.21	424	178	228
Average	12107	7511	0.187	3.20	429	181	229
Mark II-a	12258	7451	0.207	3.21	430	178	245
Mark II-b	12213	7455	0.203	3.21	429	178	241
Mark II-c	12209	7394	0.210	3.21	425	176	244
Average	12227	7433	0.207	3.21	428	177	243

10-80MHz Attenuation Coefficient Spectra

- Sample elastic properties comparable to commercial materials
- Attenuation behavior similar at low frequencies
- Behavior differs at higher frequencies, due to grain size and shape effects

Mark I SEM

Mark I etched

- Some elongated, high aspect ratio grains present
- Appears to have a bimodal grain size distribution
- Mainly smaller grains with some larger ones

Mark I fracture surface

- Fragment from dynamic testing
- Predominantly transgranular fracture

Mark II SEM

Mark II etched

- Many elongated, high aspect ratio grains present
- Appears to have a bimodal grain size distribution
- Many large grains with smaller grains between them

Mark II fracture surface

- Predominantly transgranular fracture
- Clean fracture surfaces no C or B₄C evident

Summary

- Ultrasonic testing was performed to measure elastic properties, predict microstructural characteristics of SPS SiC samples
 - Anomalous behavior precluded quantitative estimates of secondary phase inclusion and SiC grain size
- FESEM imaging showed predominantly large, high aspect ratio grains
- Different additive samples
 - Smaller B₄C additives show much cleaner microstructures, even with higher additive content
 - Larger additive size appears to decrease SiC grain size
 - Additive morphology doesn't appear to have much of an effect
- Different processing method samples
 - Samples show similar elastic properties and acoustic behavior, but show very different microstructures
- Irregular grain shapes and wide grain size distribution must be corrected before definitive conclusions can be made

Future Work

- Fabricate SiC samples with B₄C and C additions via SPS
 - Use different sintering cycles to produce more equiaxed grains
 - Prepare samples using different processing methods
 - Use different size/purity B₄C, C starting materials
 - Generate standard samples with varying grain sizes, additives
- Ultrasound characterization of standard samples to determine:
 - Scattering prefactors
 - Grain size measurements
 - Absorption mechanisms
 - Secondary phase size distributions, concentrations
- Expand transducer library to fill frequency gap between 30 40 MHz, expand capabilities to lower, higher frequencies

