

Defining Microstructural Tolerance Limits of Defects for SiC Armor – Jointly Funded with MCOE

Graduate Student: D. Slusark Core Faculty: R. Haber, D.E. Niesz ARL Leaders: J. McCauley, E. Chin ARL Collaborator: J. Campbell, J. LaSalvia, T. Sano, J. Swab JHU Collaborator: L. Graham-Brady

Ceramic, Composite, and Optical Materials Center An NSF Industry/University Cooperative Research Center

April 26, 2012

Long Range Objectives

• To correlate the relationship of non-destructive evaluation with microstructure for sintered SiC plates

•To quantify the effect of microstructural variability in SiC materials on static properties

Defining Microstructural Tolerance Limits of Defects for SiC Armor

Testing Plan

Objective 1: Define Sample Sets for Experimentation
Objective 2: Establish Parameters for Comparison
Objective 3: Determination of Correlation

Commercial Samples

Mechanical Testing of Samples

Tile A

Layer	Avg (MPa)	Std dev (MPa)	m
Тор	452	47	11.5
Middle	454	56	9.7
Bottom	450	49	10.9
Entire Tile	453	50	10.9

20MHz Attenuation Coefficient

h h (1/Ps)

-6 + 5.4

5.6

Group D – Low Mean Attenuation Coefficient Avg – 2.15 dB/cm

Flexure Testing and Weibull Analysis

6.0

ln (σ)

6.2

6.4

5.8

6.6

Electron Microscopy and Fractography

Post Testing Analysis and Correlation Evaluation

Primary Fracture Position/Qualitative NDE Analysis

Attenuation coefficient (α) vs. MOR

Attenuation coefficient (α) vs. MOR

- Average value of attenuation coefficient → 2.15 dB/cm
- Standard deviation of attenuation coefficient → 0.05 dB/cm
- Detectable variation within attenuation coefficient measurement → 0.05 dB/cm

	b1	R ²
Top Layer	4.00E-06	7.00E-05
Middle Layer	-2.00E-05	1.40E-03
Bottom Layer	2.00E-04	1.11E-01

Quantitative NDE Analysis

- Study performed on 'good' commercially available tiles
- Expected to determine corresponding difference in mechanical properties and NDE results

- NDE results show that there was not enough detectable variation amongst the tiles used in the study
 - Need to manufacture/alter samples such that there was a difference - Targeted Samples

Route I Reduced-Density SiC tiles

- Stage I tiles were fully-dense commerical samples
- Inclusion of additional porosity
 - → detrimental affect on strength and increased acoustic attenuation
- Tiles pressed to a lower green density
- Standard firing cycle
- Intent \rightarrow tile with increased porosity

Route I Reduced-Density SiC tiles

- 3 tiles were produced
- 60 x 60 x 6 mm

	Tile	Tile	Tile
	1	2	3
Bulk Density (g/cm ³)	3.08	3.09	3.09

• Average of original lot of 41 tiles 3.16 g/cm³

	Avg (MPa)	Std dev (MPa)	m
Tile 1	306	17	-
Tile 2	324	18	-
Tile 3	322	18	-
Three Tiles	317	19	20.4

Route I Reduced-Density SiC tiles

NDE Results/Flexure Testing/Weibull Analysis

Increased residual porosity

Route I

Partially compacted spray dried granule relic

$\sigma_{\rm f}$ - 287 MPa

Electron Microscopy and Fractography

Route II Enhanced Boron Content SiC tiles

 Flexure bar fracture → agglomerates of boron carbide sintering aid

- Spray-dried boron carbide fines added to batch
- Tiles undergo standard firing cycle

Route II Enhanced Boron Content SiC tiles

- 2 tiles were produced
- 101 x 101 x 6 mm
- 3.0% boron content
 (0.6% for commercial tiles)

	Tile 1	Tile 2
Bulk Density (g/cm ³)	3.14	3.14

• Average of original lot of 41 tiles 3.16 g/cm³

JTGERS

20MHz Attenuation Coefficient Avg - 8.85 dB/cm

	Avg (MPa)	Std dev (MPa)	m
Tile 1	152	22	-
Tile 2	159	21	-
Three Tiles	155	21	22.2

Route II **Enhanced Boron Content SiC** tiles

_{0f} < 100	Region I
100 ≤ _{☉f} < 140	Region II
140 ≤ _{☉f} ≤ 175	Region III

NDE Results/Flexure Testing/Weibull Analysis

21

Electron Microscopy and Fractography

	b1	R ²
Reduced Density	-2.60E-03	3.24E-02
Enhanced Boron Content	-1.00E-05	2.00E-06

Qualitative and Quantitative NDE Analysis

Reduced Density Tile B

Summary and Conclusions

	ਾ _f (MPa)	∞20 мнz (dB/cm)	ρ (g/cm³)
Commercial samples	485	2.20	3.16
Reduced Density	317	3.25	3.08
Enhanced Boron Content	155	8.65	3.14

- The contributions of individual strength limiting features were not resolved in the ultrasound scan maps
- However, variations in bulk microstructure corresponding to the three sample sets were represented in the attenuation coefficient values

- We would like to thank the NSF/IUCRC Ceramic, Composite, and Optical Materials Center (CCOMC) as well as the US Army Research Laboratory - Materials Center of Excellence (MCOE) for funding this research
- For their assistance with experimentation and ideas: V. Bartley, S. Bottiglieri, C. Ho, C. McLaren, D. Maiorano, S. Mercurio, S. Miller, L. Murray, S. Quinn, B. Rafaniello, J. Soltesz, M. Sulik, and J. Tan
- The author wishes to thank Nikolas Ninos for preparation of samples

GERS

Ceramic, Composite, and Optical Materials Center

Questions?

