Solution Synthesis of Spinel

Ceramic, Composite and Optical Materials Center Rutgers, The State University of New Jersey

Richard Riman, John Wilson, and Daniel Kopp

Background

- Spinel (MgAl₂O₄) is a very attractive material for the preparation of IR-transparent windows that have excellent ballistic protection properties.
- Current approaches for commercially producing spinel use high temperature (600 to 1000°C) solid-state reaction methods along with subsequent milling, leading to reduced purity and high energy costs.
- Only one manufacturer of high-quality spinel powder in the USA, Baikowski and the cost is high (\$60/kg).*
- There is an opportunity to research, develop and commercialize low-energy hydrothermal technology that can produce low-cost spinel.

Overall Goals

- Find the mildest reaction conditions and shortest reaction times to prepare MgAl₂O₄ spinel powder direct from solution (with <u>no</u> high temperature treatment).
- Study the crystallization and reaction kinetics for particle formation to understand how to control the physical and chemical characteristics of the spinel powder.
- Develop a thermodynamic and kinetic model to predict the behavior of the particle formation and subsequent physical and chemical characteristics of the spinel as a function of the processing variables.

Hydrothermal Synthesis

- Chemical precursors are heterogeneous slurries, gel and or homogeneous solutions, acid or base mineralizer required
- Aqueous, mixed solvent or solvothermal solution medium
- Mild to severe reaction conditions (T=25-600°C, p=1-4110 atm)
- Anhydrous oxides form in a single process step
- P-T-H₂O interaction => unique phase equilibria
- Solution-mediated reaction => labile reaction kinetics relative to solid state reaction
- Controlled nucleation, growth and aging => controlled size and morphology
- Process can be inexpensive

Mechanochemical and M-H Synthesis

- Mechanical forces generate stresses that induce chemical reactions
- Inexpensive milling equipment
- Inexpensive starting materials
- Well suited for scale up (air, atomspheric pressure, room temperature)
- Solid-solid reactions
- Reactions between solid and aqueous solution (M-H synthesis)

Conventional- and Mechanochemical-Hydrothermal Methods

C-H method

P = 5-20 bars

T = 50-200°C

RPM = 0, 100-1400

M-H method

P = 1 atm

T = 25-32°C

RPM = 800-2000

Parr Autoclaves: Model 4530

Nara Micros: MIC-0

Rational Approach to Direct Crystallization of Oxides

- Compute thermodynamic equilibria as a function of the processing variables for phase of interest
- Generate equilibrium diagrams to map processing variable space for phase of interest
- Design hydrothermal experiments to test and validate computed diagrams
- Utilize processing variable space maps to explore opportunities for control of reaction and crystallization kinetics

Baseline Knowledge

- Thermodynamics
- Reaction Kinetics
- Crystallization Kinetics
- Reactor know-how

Principles Governing Crystal Growth

(after La Mer and Dinegar, 1950))

- Uniformity creates nucleation, growth, and ageing regimes
- Nucleation is an on/off function
- Growth is a continuous function once solubility (S>1) is exceeded in the slightest fashion
- Ageing is dominant after S approaches one (saturated solution)

Equilibria of Ca(OH)₂-H₃PO₄-NH₄OH-HNO₃-H₂O System

1.
$$H_2O = H^{+1} + OH^{-1}$$

2.
$$HP_2O_7^{-3} = H^{+1} + P_2O_7^{-4}$$

3.
$$H_2P_2O_7^{-2} = H^{+1} + HP_2O_7^{-3}$$

4.
$$H_3P_2O_7^{-1} = H^{+1} + H_2P_2O_7^{-2}$$

5.
$$H_4P_2O_7(aq) = H^{+1} + H_3P_2O_7^{-1}$$

6.
$$HPO_{4}^{-2} = H^{+1} + PO_{4}^{-3}$$

7.
$$H_2PO_4^{-1} = H^{+1} + HPO_4^{-2}$$

8.
$$2 H_2 PO_4^{-1} = (H_2 PO_4)_2^{-2}$$

9.
$$H_3PO_4$$
 (aq) = $H^{+1} + H_2PO_4^{-1}$

10.
$$HNO_3$$
 (aq) = $H^{+1} + NO_3^{-1}$

11.
$$NH_3$$
 (aq) + $H_2O = NH_4^{+1} + OH_2^{-1}$

12.
$$NH_4NO_3$$
 (aq) = $NH_4^{+1} + NO_3^{-1}$

13.
$$CaH_2PO_4^{+1} = Ca^{+2} + H_2PO_4^{-1}$$

14.
$$CaNO_3^{+1} = Ca^{+2} + NO_3^{-1}$$

15.
$$CaOH^{+1} = Ca^{+2} + OH^{-1}$$

16.
$$CaPO_4^{-1} = Ca^{+2} + PO_4^{-3}$$

17.
$$CaHPO_4$$
 (aq) = $Ca^{+2} + HPO_4^{-2}$

18.
$$Ca(OH)_2$$
 (aq) = $Ca^{+2} + 2OH^{-1}$

19.
$$Ca(NO_3)_2$$
 (aq) = $Ca^{+2} + 2NO_3^{-1}$

20.
$$Ca_5(OH)(PO_4)_3$$
 s = $5Ca^{+2} + OH^{-1} + 3PO_4^{-3}$

21.
$$CaHPO_4$$
 (s) = $Ca^{+2} + HPO_4^{-2}$

22.
$$CaHPO_{4.2} \cdot H_2O$$
 (s) = $Ca^{+2} + HPO_4^{-2} + 2H_2O$

23.
$$Ca_3(PO_4)_2(s) = 3Ca^{+2} + 2PO_4^{-3}$$

24.
$$Ca(H_2PO_4)_2 \cdot H_2O(s) = Ca^{+2} + 2H_2PO_4^{-1} + H_2O$$

25.
$$Ca(H_2PO_4)_2$$
 (s) = $Ca^{+2} + 2H_2PO_4^{-1}$

26.
$$Ca_4O(PO_4)_2$$
 (s) + $H_2O = 4Ca^{+2} + 2OH^{-1} + 2PO_4^{-3}$

27.
$$Ca_{10}O(PO_4)_6$$
 (s) + $H_2O = 10Ca^{+2} + 2OH^{-1} + 6PO_4^{-3}$

28.
$$Ca_4H(PO_4)_3$$
 (s) = $4Ca^{+2} + HPO_4^{-2} + 2PO_4^{-3}$

29.
$$Ca_8H_2(PO_4)_{6.5} \cdot H_2O(s) = 8Ca^{+2} + 2HPO_4^{-2} + 4PO_4^{-3} + 5H_2O(s)$$

30.
$$Ca(NO_3)_{2,3}H_2O(s) = Ca^{+2} + 2NO_3^{-1} + 3H_2O$$

31.
$$Ca(NO_3)_{24} H_2O(s) = Ca^{+2} + 2NO_3^{-1} + 4H_2O$$

32.
$$Ca(NO_3)_2(s) = Ca^{+2} + 2NO_3^{-1}$$

33.
$$Ca(OH)_2$$
 (s) = $Ca^{+2} + 2OH^{-1}$

34.
$$(NH_4)_2HPO_4.2H_2O$$
 (s) = $2NH_4^{+1} + HPO_4^{-2} + 2H_2O$

35.
$$(NH_4)_2HPO_4$$
 (s) = $2NH_4^{+1} + HPO_4^{-2}$

36.
$$(NH_4)_3PO_{43} \cdot 3H_2O(s) = 3NH_4^{+1} + PO_4^{-3} + 3H_2O$$

37.
$$(NH_4)H_2PO_4$$
 (s) = $NH_4^{+1} + H_2PO_4^{-1}$

38.
$$(NH_4)NO_3$$
 (s) = $NH_4^{+1} + NO_3^{-1}$

39.
$$H_2O(v) = H_2O$$

40.
$$NH_3(v) = NH_2(aq)$$

41.
$$HNO_3$$
 (v) = HNO_3 (aq)

Ca(CH₃COO)₂-K₃PO₄-H₂O System

Reaction Conditions

Morphology	Ca/P	NH₃/KOH	EDTA/Ca	Time (h)	Temp (°C)	Stirring Rate (rpm)
Plates	2	NH_3	0	8	180	300 (High Shear)
Needles	2	None	0	24	200	0
Equiaxed Spheres	2	NH ₃	0	24	200	1700
Equiaxed Hexagons	1.24	КОН	1	24	200	0
Barrels	1.24	КОН	1	1	200-230	5375 (High Shear)
Dendrites	1.24	КОН	1	25	192	0
Coral	2	КОН	0	24	180	0
Leaves*	1.67	NH_3	0.93	24	120	0

^{*}solvothermal: 1,4-butandiol/H₂O=30/10 (v/v)

Gallery of Morphologies with Solution Crystallization of HA

TEM – Very Small Nanoparticles! Very Difficult to Isolate.

Method of Attack

- Daniel Kopp (1st year graduate student)
 - BS Materials Science and Engineering, Rutgers University
- Thermodynamic modeling
 - Precursor selection
 - Reaction conditions
- Down-select Synthesis Approach
 - Hydrothermal synthesis
 - Conventional Reactors
 - Microwave reactors (largest one in the USA in a university)
 - Mechanochemical synthesis
 - Unique Micros 0 system at RU (only 2 in the USA)
 - Mechanochemical-hydrothermal
- Develop in situ characterization methods
 - FT-IR spectroscopy
 - XRD
- Study reaction and crystallization kinetics to control physical and chemical characteristics.
- Develop kinetic model to semi-quantitatively predict the physical and chemical characteristics of the spinel powder.
- Supply powder to Haber group in 20-50 g quantities for processing studies

Prior work - Atakan and Riman 2007

- Recommended precursors:
 MgO and Al₂O₃
- T = 360 °C
- P = 2828 psi
- pH = 5.8
- Advantages:
 - Does not require mineralizer to control pH
 - No by-product
 - Minimal corrosion
 - Precursors available within the desired purity level

 Are synthesis routes with cheaper precursors such as bauxite compounds feasible?

Confidential and Proprietary to Rutgers University

Prior work – Atakan and Riman 2007

- Spinel hydrothermally synthesized from steam-based reactions of MgO and Al₂O₃ at 400 °C, 2680 psi and washed in 1 M HCl
- Simple separation technology!

Confidential and Proprietary to Rutgers University

Mechanochemical Synthesis

- Domanski et. al.¹ synthesized spinel from MgO and Alumina at room temperature by ball milling in 140 h.
- Contamination due to milling media equipment.
- Suchanek et. al.² synthesized hydroxyapatite at room temperature using stabilized zirconia media and liners in a mechanochemical-hydrothermal (M-H) reactor.
- Can M-H be used to synthesize spinel, with or without hydrothermal solutions?

Nara Machinery Co.'s MIC 0 zirconia ring/zirconia-lined wet milling machine from the Riman laboratory.

- 1. J. Am. Ceram. Soc., 87 (11): 2020-2024 2004
- 2. Biomaterials, 25(19): 4647-4657 2004.

In situ characterization

- ATR-FTIR spectroscopy reaction probe technology under development in the Riman laboratory for hydrothermal processes.
- Use of beryllium cell-based Xray diffraction at PNNL, BNL and eventually at Rutgers.

Cost Function for MgO Powder

99.9% pure, average particle size, surface area >20 m²/g

Cost Function for γ-Al₂O₃ Powder

99.99% pure, surface area 70-100 m²/g

Project Benefits

Economic

- Capital equipment, energy and raw materials costs (< \$20/ton) are kept low because of minimal drying and elimination of milling, separation and high temperature processing steps.
- New source of MgAl₂O₄ spinel powder.
- Opportunity for commercialization

Academic

- First low temperature spinel synthesis method that also offers control particle size and morphology.
- First fundamental study on solution spinel crystallization thermodynamics and kinetics.
- Method may be applicable to other ceramic chemistries

Next Steps

- Complete literature review of spinel synthesis literature and write a review paper.
- Prepare and characterize initial spinel samples using the Atakan and Riman approach.
- Research in situ and ex situ characterization techniques.
- Run and validate thermodynamic models for different precursors.
- Get training on hydrothermal reactor and chemical and physical characterization instrumentation

