

Ceramic, Composite and Optical Materials Center

Patrick Kwon Mechanical Engineering Michigan State University East Lansing, Michigan <u>pkwon@egr.msu.edu</u> (517) 355-0173

Active & Prospective Members

- 1. Boeing, Seattle, WA
- 2. Fraunhofer CCL, East Lansing, MI
- 3, 4. Los Alamos National Lab, NM
- 5. Diamond Innovation/Valenite, Columbus, OH
- 6. ARMY ARDEC
- GM Powertrain

MICHIGAN STATE

UNIVERSITY

- Pratt & Whitney
- Caterpillar, Peoria, IL
- General Dynamic, St. Petersburg, FL
- Ford Motor Company
- Nexteer (Delphi)
- General Electric

Industry/University Cooperative Research Center.

Current Projects

- Drilling of Composite/Metal Stack (Boeing, New Tech Ceramic & Fraunhofer)
 - Carbides, PCD & Coated Carbides
- Soft Machining (LANL & Valenite)
 - Adhesion
- Machining Titanium (ARMY-ARDEC & DI)
 - Tool Wear mechanisms
- Advanced Cutting Tool Systems (LANL-Fraunhofer)
 - Stacking sequence & thickness of Multi-layer Coatings
- MQL with Nanoenhanced-Lubricant (UNIST & XG Science)
- Many other projects are possible with other faculty at MSU.

Industry/University Cooperative Research Center.

Tool Wear Approach

Still, an empirical approach

MICHIGAN STATE

UNIVERSITY

Taylor's Model : $V^a d^b f^c$ = constant

Possible Wear Mechanisms

Mechanical wear

Abrasive wear

- The sliding and rolling of hard second phase on the work/tool materials interface
- Delamination Wear
- Continual loading leads to subsurface cracks propagation
- Adhesion (Al)
- Welding of asperity junctions

Thermochemical wear

Dissolution Wear

- Thermally activated mechanisms -Atomic transport across the interface

Diffusion wear

- The component of tool materials can be diffused into chips
- Chemical reaction (Ti)
- Chemical reaction between tool and work material
- Thermomechanical fatigue

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Abrasive Wear Models

2-body Wear

MICHIGAN STATE UNIVERSITY Center for Advanced Cutting Tool Technology Amount of Abrasives. Compositions of Steels

(All in wt%)

	С	Mn	Р	S	Si	Ni	Cr	Мо
1018	0.21	0.70	0.02	0.03	0.21	0.07	0.13	0.02
1045	0.48	0.74	0.01	0.04	0.27	0.05	80.0	0.02
1070	86.0	0.78	0.01	0.02	0.22	0.04	0.17	0.02
1018 (S)	0.16	0.83	0.01	0.03	0.20	0.01	80.0	0.01
1045 (S)	0.48	0.74	0.01	0.04	0.27	0.05	80.0	0.02
1065 (S)	0.64	0.80	0.01	0.01	0.28	0.07	0.15	0.02
1095 (S)	0.89	1.02	0.02	0.03	0.31	0.15	0.32	0.14

• Round Bar stocks: nominally of diameters between 3" and 6" and length about 2-1/2' initially.

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Flank Wear - Spherodized

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Flank Wear - Pearlitic

Dissolution Wear Model

The material pair in sliding will dissolve to each other if the free energy of the material pair decreases by the formation of solution. Dissolution wear rate for tertiary coating, $A_xB_yC_z$ (Ti₁C_{0.5}N_{0.5}) (Kramer & Suh, 1980; Kramer & Kwon, 1985)

BMV^{0.5} C_{AxByCz}

B = the dissolution wear coefficient

M =molar volume of the coating material in cm^3/mol V =cutting speed (m/min)

Atomic transport across the interface

Solubility
$$C_{A_xB_yC_z} = \exp\left[\frac{\Delta G_{A_xB_yC_z} - x\Delta G_A^{xs} - y\Delta G_B^{xs} - z\Delta G_C^{xs} - RT(x\ln x + y\ln y + z\ln z)}{(x + y + z)RT}\right]^{-1}$$

 $\Delta G_{A_xB_yC_z} = \text{free energy of formation}$
 $\Delta G_i^{xs} = \text{excess free energy of i component}$
 $R = \text{gas constant}$
 $T = \text{temperature (K)}$

Industry/University Cooperative Research Center.

Dissolution Wear Rate

Tool Materials	Predicted Relative Wear	Rate Est	imated Time for $25\mu m$ of wear
ZrO_2	0.0000367	26.053	26 month
Al_2O_3	0.00124	27.051	23 days
TiO ₂	0.00313		21 hr
HfN	0.680		60 min
HfC	1.	1	41 min
TiN	5.92		6.9 min
TiC	12.8		3.2 min
BN	57.0		43 sec
WC	332.	0.824	7.4 sec
Diamond	445	0.227	5.5 sec
	At 1300°C into iron	At 1100°C i nto Ti	

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Crater Wear – Pearlitic

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Crater Wear - Spherodized

Dissolve into ferrite Phase

Industry/University Cooperative Research Center.

Effectiveness of Multi-layer coating (LANL) Experiments - Turning AISI 1045 Steels

MICHIGAN STATE

UNIVERSITY

Cut Fee Dep & 480s. Cut Wor App Cut bide 200 µm

UNIVERSITY Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center.

FE simulation - ABAQUS Modeling

Arbitrary Lagrangian and Eulerian (ALE) Formulation

- Tool and Work Material (Johnson-Cook Model for 1045 steels)
- Constitutive & Friction models

MICHIGAN STATE

Industry/University Cooperative Research Center.

Crater Wear Summary

Tuning of 1045 steel with multilaver/TiN/Al₂O₂/TiCN) coating

MICHIGAN STATE

UNIVERSITY

Crater wear evolution

Olortegui-Yume and Kwon, 2010

Industry/University Cooperative Research Center.

Interpretation of Results

Change in the location of Max. Wear Dissolution Resistance of Alumina Phase change in Alumina & deteriorated wear resistance

New Experimental Setup

Center for Advanced Cutting Tool Technology

- Turning of 1045 steels till carbide is exposed
- Four coatings on WC-6%Co substrates:
 - Boron Aluminum Magnesium (AIMgB₁₄) and TiB₂ alloy (BAM) *
 - AITiN+Si₃N₄ binder (C7 nano-composite) provided by UNIMERCO Inc., Saline, MI.
 - Altin *
 - TiN *

MICHIGAN STATE

IVFRSI

- Sandvik Flat Carbide Inserts (SCMW 432)
- Determining Friction for each coating

* Coating provided by Fraunhofer, Inc., Michigan State University

Industry/University Cooperative Research Center.

MICHIGAN STATE UNIVERSITY Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center. 1045 Normalized & Refined

TICN

1 6

2500

2000

10

1500

Normalized & Grain Refined AISI1045

168 VHN

20min 10.0 12min 7min 5.0 3min -Omin 1. in the state 0.0 TiN -5.0 Al₂O₃ 20min -10.0 z TICN -15.0 (µm) -20.0 23min -25.0 -30.0 -35.0 -40.0 45.0 50.0 4000 3500 3000 2500 2000 1500 1000 500 0 um **y (μm)**

Normalized AISI1045

211 VHN

22min

3000

3500

10 0

12.0

14.0

16.0

18.0

4000 μm

MICHIGAN STATE

Subramanian, Ingle, & Kay, *Surface and Coatings Technology*, 61:293-299 (1993) Secondary Ion Mass Spectroscopy

Carbide Tools with a Ferrous Material

Industry/University Cooperative Research Center.

Dissolution + Subsequent Diffusion

Interactions within the chip's bulk

MICHIGAN STATE

UNIVERSITY

Industry/University Cooperative Research Center.

Sectioned View, Steady State

Industry/University Cooperative Research Center.

Difference in Wear Mechanisms

MICHIGAN STATE

UNIVERSITY

Tool Wear During Turning of Ti-6AI-4V using PCD and Carbide Cutting Tools

ARMY - ARDEC

David Schrock and Patrick Kwon

Center for Advanced Cutting Tool Technology Michigan State University

MICHIGAN STATE UNIVERSITY

Center for Advanced Cutting Tool Technology

Ti-6Al-4V

- Two phase metal
 - HCP (α- phase)
 - BCC (β-phase)
- Useful for Aerospace applications demanding high temperature strength
 to weight ratio and corrosion resistance

- Difficult to machine material
 - Low thermal conductivity
 - High reactivity
 - High strength at high temperature
 - Adhesion
 - Current recommendations
 - Low cutting speed (<61m/min)
 - Flood cooling
 - Straight carbide cutting tools

Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center.

MICHIGAN STATE

- Ti-6AI-4V work material turned on a YAMA SEIKI GA-30 lathe
- Cutting Tools
 - 2 grades of Carbide CNMA-432
 - YD101 (1um ave. grain size)
 - YD201 (2um ave. grain size)
 - PCD (Compax 1200P from Diamond Innovation) CNMA-432
 - with average grain size of 1.5 μ m with 92% volume.
 - 0 degree and 10 degree rake faces used
- Cutting Conditions
 - 3 Cutting speeds (61m/min, 92m/min, 121m/min)
 - Feed .025mm/rev

Industry/University Cooperative Research Center.

Crater Wear Profiles

YD101 YD201 Slightly more crater wear on YD101 (smaller grains)

FE Simulation at v= 200ft/min

Work Material - Johnson-Cook model in literature Tool Material - Thermally non-rigid but mechanically rigid

MICHIGAN STATE UNIVERSITY Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center. Evidence of Phase-Dependent Tool Wear

Figure: Rake face of PCD tools after cutting at 61m/min. Note the rough, scalloped surface

Figure: Rake face of PCD tools after cutting at 121m/min. Note the smooth craters

Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center. PCD versus Carbide Tool Wear

PCD

MICHIGAN STATE

 Phase change dependent tool wear previously discussed explains differences between wear at high and low cutting speeds

Carbide

- FEM on the carbide tools predicts cutting temperature over 1000C for the carbide tools at 61m/min
 - Characteristic smooth craters for all cutting speeds

Industry/University Cooperative Research Center.

Temperature from FEM

 FEM show temperatures for machining with PCD at 61m/min of 897C

MICHIGAN STATE

UNIVERSITY

- From phase diagram, mostly alpha phase
- At high cutting speed, temperature approaches 1000C
 - Transformation to beta phase

Phase diagram for Ti-6AI-V system

Table 1: Temperature Esti	mation from FE Simulation
---------------------------	---------------------------

Cutting speed	PCD tools	WC-6Co tools
61m/min	897°C	1095°C
91m/min	942°C	1156°C
122m/min	991°C	1198°C

Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center.

Impact on Tool Wear

Low Cutting Speed

 Chip is mainly α-phase (HCP) or α + β phase

MICHIGAN STATE

UNIVERSITY

- Less favorable plastic deformation properties
 - Relative sliding at the tool work interface
 - Periodic separation of adhered material by fracture of tool, creating scalloped wear pattern
- Much less self diffusivity
 - Fewer vacancies, slow dissolution wear

High Cutting Speed

- Chip has transformed to β phase (BCC)
 - Self-diffusivity 5 orders of magnitude higher for β at 1000C than for alpha at 500C
 - Promotes generation vacancy dislocations which can accept interstitial carbon atoms (dissolution wear)
 - Improved plastic deformability
 - allows chip seizure, increasing dissolution wear
 - Separation of work material from tool occurs inside of chip
 - Prevents scalloped wear pattern

- SEM and optical microscopy to compare phases present in deformed chip to that of the unreformed work material
- Development of 3-d FEM simulation to more accurately predict temperature within tool material during cutting
- Determine investigate the kinetics of the phase change

Minimum Quantity Lubrication

 MQL Parameters which significantly influence on the effectiveness of MQL machining

MICHIGAN STATE

UNIVERSITY

- Droplet size: oil mist size & health issue
- Droplet distribution: wetting area & nozz distance
- Other parameters: Air pressure & flow r²
- Wetting angle: lubrication performance (coatings (?)
- Improvement of MQL lubricants

Industry/University Cooperative Research Center.

x-GNP modified MQL oil

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

MICHIGAN STATE

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Comparative Test

Central wear (8th layer) at 3500 RPM

Flank wear (8th layer) at 4500 RPM

Industry/University Coorperative Research Center.

Machining Soft Materials: Commercially Pure Aluminum

Xin Wang and P. Kwon Department of Mechanical Engineering Michigan State University East Lansing, MI

Center for Advanced Cutting Tool Technology Industry/University Cooperative Research Center. Evidence of Carbide Grain Pull-Out

UK20 - 9.5 hours

Grain

pull out

Groove

(5000X)

Grain pull-out aft location on flank

MICHIGAN STATE

UK20 – 9 hours

(5000X)

at same

Jian pun-ot

Industry/University Cooperative Research Center.

BUE evolution

Evolution of volume of built up edge.

$\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

2 types of BUE

Element (at %)	Initial BUE	Thin Iayer
ΑΙ	77.65	68.48
C	19.54	21.92
0	2.63	9.41
Si	0.18	0.19
W	0	0

Before etching etching for 2 hour & for 10 hours with 1% NaOH

- Carbon comes from the carbon contamination in SEM measurement.
- High concentration of oxygen was detected in the thin layer [6,7]. It indicates metal oxide exist in thin layer.

Drilling CFRP/Ti Stack

K. Park & X. Wang Department of Mechanical Engineering

Drilling Composite/Metal Stacks

Drilling Experiments at WSU

- CNC (HAAS Mini-Mill)
- Carbide, PCD & BAM
- Mist machining

- Post Analysis ay MSU & WSU
 - Flank/Outer edge/Crater wear after every 20 holes (SEM, confocal microscope)

Cutting tools (3 types)	WC (10% Co micro-grain)	BAM coating (WC) (10% Co micro-grain)	PCD (Bimodal grade)		
Cutting speed	CFRP 2000 rpm; Ti 400 rpm (WC) - 300 rpm (PCD)				
Constant parameters:	Drilling feed: 0.0762 mm/rev (CFRP) and 0.0508 mm/rev (Ti) Coolant: Water-soluble cutting fluid, Mist coolant flow rate at 16 mL/min.				

Industry/University Cooperative Research Center.

Tool coatings

- 1. CVD Diamond coating Boeing
- 2. BAM coating Fraunhofer
- 3. Nanocomposite coating Unimerco's C7 Plus

;	Coating	Cutting edge angle (°)	Coating thickness	
	Uncoated	59.2	/	
	BAM	58.7	3.5 µm	
	Diamond	61.2	12.5µm	
	Composite	57.0	3 µm	
	AITiN	60.2	3µm	

4. AlTiN coating – Unimerco (from Europe)

Industry/University Cooperative Research Center.

Observation

 Tool wear in CFRP drilling was blunting the edge.

MICHIGAN STATE

UNIVERSITY

 Tool wear in TI drilling was Chipping.

Tool Wear Analysis in Drilling Center for Advanced Cutting Tool Technology

Industry/University Cooperative Research Center.

Wear Mechanism - Stack

	CFRP	Ti		CERP	Ti
Carbide	Abrasive we to carbon fit through 2-b abrasion pro	Ti drilling	esion s ouilt- d	CFRP only	Ti adhesion → WC grains pulled out as built- up-Ti removed
PCD	Minimal tool due to high hardness of		on + g at es due of		Ti adhesion + Major chipping areas get larger due to additional chipping

Industry/University Cooperative Research Center

Edge blunting wear in CFRP drilling

Our hypothesis is

In metal machining, stagnation zone protect the cutting edge. In CFRP machining, there is no stagnation zone to protect the cutting edge

wear pattern:

cutting parameters: $v_c = 150$ m/min, (= 0.05 mm, $a_p = 0.05$ mm, $t_c = 12$ min, dry c_c

Figure 1. Wear pattern of a PCBN tool in hardened steel machining

Zone 2 (crater wear) Zone 4 (flank wear) Zone 3 (cutting edge – no wear)

Cutting edge has no wear in metal machining.

Because there is no relative sliding or very slow sliding of work material on the cutting edge of the tool.

Industry/University Cooperative Research Center.

Wear of coated drills (CFRP)

MICHIGAN STATE

UNIVERSITY

Industry/University Cooperative Research Center.

Wear mechanism in CFRP drilling

Abrasive wear or sliding wear?

Table 2. Abrasive wear rate and sliding wear rate of the coatings

	Hardne ss at 25°C (GPa)	Relative abrasive wear rate	Sliding wear rate (mm3/Nm)	Relative sliding wear rate	Wear volume (um^2)	Total wear	Relative coatings wear rate
Uncoated	26	1	1.39E-07	1	Diamond	71	0.111
carbide					BAM	1015	3.992
Diamond	70	0.007	1.22E-08	0.088	Composite	761	1.811
BAM	43	0.078	7.27E-07	5.230	Altin	944	2.772
AITIN	40	0.113	3.98E-07	2.863			

Abrasive wear rate of coating was predicted by the coating hardness data and abrasive wear equation.

Sliding wear rate was acquired by a tribo-meter test experiment.

(Sliding wear is too complicated, and could not be predicted by material property.)

Tool wear in Ti drilling

 Besides the edge chipping, the tool wear in Ti drilling is much smaller than in CFRP drilling.

MICHIGAN STATE

UNIVERSITY

Carbide: Edge chipping at 20 holes

Diamond: Coating flake off at 10 holes

Industry/University Cooperative Research Center.

Uncoated Carbide Tools Wear on CFRP only + Wear on Ti only = Wear on Stack

Center for Advanced Cutting Tool Technology UNIVERSITY Industry/University Cooperative Research Center. **Comparison of Ti and Stack drilling**

Ti drilling 20 holes

MICHIGAN STATE

Stack drilling 20 holes

More titanium adhesion in stack drilling than Ti drilling. It may due to the edge rounding in stack drilling -> more stagnation material at the cutting edge

- The edge blunting (dulling, rounding) wear in CFRP machining is due to lack of a work material stagnation zone in front of the cutting edge, which would normally prevent the edge wear.
- The sliding wear rather than abrasive wear in CFRP machining.
 - Hard coating without good sliding wear resistance do not increase the tool life.

Acknowledgement

- NSF for supporting I/UCRC on Advanced Cutting Tool Technology
- Boeing
- Los Alamos National Laboratory
- Fraunhofer CCL
- Valenite Inc.
- ARMY-ARDEC
- (New Tech Ceramics, Sandvik, Unimerco, GM & UNIST)

