Semi - annual Report Spring 2012

Densification and Characterization of Transparent Al₂MgO₄ Spinel Doped with Al₂O₃ and Al₂O₃

Principal Investigator:Richard A. HaberGraduate Student:Minh T. Vu

Ceramic and Composite Materials Center, Rutgers University,

607 Taylor Road, Piscataway, NJ, USA

Long-range Goal

- Improve the mechanical performance of transparent Al₂MgO₄ spinel.
- Characterize the microstructural, optical and mechanical properties of Al₂O₃ and Y₂O₃ – doped spinel

Typical properties of glass and ceramic armor materials

Property	Units	AION	Fused silica	Sapphire	Spinel
Density	kg/m ³	3.69×10^{3}	2.21×10^3	$3.97 imes 10^3$	3.59×10^3
Areal density (at 1" thickness)	kg/m ²	93.89	55.85	100.97	90.86
Elastic modulus	Pa	$334 imes 10^9$	$70 imes 10^9$	$344 imes 10^9$	$260 imes 10^9$
Mean flexure strength	Pa	$380 imes 10^6$	$48 imes 10^6$	742×10^{6}	$184 imes 10^6$
Fracture toughness	Pa m ^{1/2}	$2.4 imes 10^6$	$0.78 imes10^6$	$3.0 imes 10^6$	$1.7 imes 10^6$
Knoop hardness	Pa	$17.7 imes 10^9$	$4.5 imes 10^9$	19.6×10^{9}	$14.9 imes 10^9$
Transmission in visual spectrum	%	82-85	91–92	75-82	-
Maturity of technology		Relatively new technology	Well established	Well established	Established, continued
		(becoming commercially viable)	technology	technology	advancements
Cost		3–5 times that of glass	Lowest material and processing costs	Higher than ALON™	Lower than ALON™
Manufacturing costs		High due to high processing temperature, proprietary powder, and surface finish requirements	Relatively low due to lower melting temps	High due to high temperature processing and surface finish requirements	Moderate due to surface finish requirements
Bottleneck		Cost and limited dimensions	Limited ballistic protection enhancement	Cost and limited dimensions	Limited dimensions
Commercial availability		Sumert Corp., limited availability	Widely available	Widely available in smaller sizes	In the process of becoming more commercially available
Environmental resistance		Low chemical reactivity and highly scratch resistant		Low chemical reactivity and highly scratch resistant	

M. Grujicic et al. Materials and Design 34 (2012) 808–819

Jung et. al. JPEDAV (2004) 25:329-345

Harris, Proc. of SPIE Vol. 5786

The formation of the interlayer in alumina-spinel co-sintered at 1550°C for 16 h

Yalamac et.al. J. Euro. Ceram. Soc (2011) 31: 1649 -1659

The concentration gradients of Al, Mg and O at sub-grain boundary of nonstoichiometric spinel

Second-phase imaging of carbon contamination and residual pores in SPSed spinel (a)optical aspect (b) carbon (c) residual pores

> Bernard-Granger et.al. Scripta Materialia 60 (2009) 164–167

Colloidal processing

Alumina – spinel co-sintering

Spark plasma sintering

Baikowski spinel S30CR

RUTGE School of Er	RS ngineering			Materials Science and Engineering	
Motivation Background Method				Experiment	Results & Discussion Conclusion
Label	Doping wt%	T _{SPS} ⁰C	T _a ∘C	Spinel powder↓	$ \begin{array}{c c} AI(NO_3)_2 & NH_4OH & DI \\ & & & & & \\ & & & & & & \\ & & & & $
S0A	0	1250, 1300, 1350	1100		(pH= 8.5 - 9.0) ↓ Heating
S1A	1	1250, 1300, 1350	1100		(400°C, 5 hours) ↓ Ball-milling
S3A	3	1250, 1300, 1350	1150		↓ Spray- drying
S5A	5	1250, 1300, 1350	1200		Heating (1200°C, 1 hour) ↓
				-	Spark plasma sintering (1250-1350°C, 80MPa)

FTIR of Al₂O₃ 5wt% coated spinel

Punch displacement, temperature, pressure, and vacuum profiles during a SPS cycle

of carbon- contaminated region

Al ions take place in the spinel lattice and change the lattice parameter

- "Sandwich" SPS helped to increase the optical transmittance by forming a carbon diffusion barrier.
- Although the sintering temperature was not high enough, Al ions did take place in the spinel lattice and changed the lattice parameter
- The doping of Al_2O_3 has improved the hardness at SPSed temperature < 1350°C
- Samples SPSed at 1250°C performed the highest hardness values, but their transmittance was the worst
- Samples SPSed at 1350°C did not show an improvement in hardness at all doping levels
- Spinel doped with 3wt% Al₂O₃ or 5wt% Al₂O₃ and SPSed at 1300°C might be the best choice regarding strength and transmittance
- The densification should be further improved

Future work

- Study the effects of Y_2O_3 and $Y_2O_3 + Al_2O_3$ additives on the microstructure, strength and transmittance of spinel
- Characterize the microstructure of spinel using HRTEM

Thank you for your attention!

